Name: _____

_ Date: _

EOC Practice Problems

1. Which scatter plot BEST represents a model of linear growth?

Α.

Years at Company

C.

2. Which scatter plot BEST represents a model of exponential growth?

D.

Close, but not as much curve at the bottom

c. $\frac{60}{50}$

-40

8 12

3. Which table represents an exponential function?

X	0	1	2	3	4
	5	6	7	8	9

Α.

В.

***************************************	***************************************		······		
Х	0	1	2	3	4
y	22	44	66	-88	110

C.

X	0	1	2	3	4
y	5	13	21	29	37
					_

10

X	0	1	2	3	4
у	3	9	27	81	243
			7 (

4. A table of values is shown for f(x) and g(x). Which statement compares the graphs of f(x) and g(x) over the interval [0, 5]?

	f(x)	x
6.950	0	0
61990	1	1
bissor	4	2
61990	9	3
61992	16	4
	25	5

<u>V</u>		
x	g(x)	
0	2	
1	-1	
2	1	
3	5	
4	13	
5	29	

bigger

- A. The graph of f(x) always exceeds the graph of g(x) over the interval [0, 5].
- B. The graph of g(x) always exceeds the graph of f(x) over the interval [0, 5].
- C. The graph of g(x) exceeds the graph of f(x) over the interval [0, 4], the graphs intersect at a point between 4 and 5, and then the graph of f(x) exceeds the graph of g(x).
- D. The graph of f(x) exceeds the graph of g(x) over the interval [0, 4], the graphs intersect at a point between 4 and 5, and then the graph of g(x) exceeds the graph of f(x).
- 5. Which statement is true about the graphs of exponential functions?
 - A. The graphs of exponential functions never exceed the graphs of linear and quadratic functions.
 - B. The graphs of exponential functions always exceed the graphs of linear and quadratic functions.
 - The graphs of exponential functions eventually exceed the graphs of linear and quadratic functions.
 - D. The graphs of exponential functions eventually exceed the graphs of linear functions but not quadratic functions.
- 6. Which statement BEST describes the comparison of the function values for f(x) and g(x)?
 - A. The values of f(x) will always exceed the values of g(x)
 - B. The values of g(x) will always exceed the values of f(x)
 - C. The values of f(x) exceed the values of g(x) over the interval [0, 5].
 - \bigcirc The values of g(x) begin to exceed the values of f(x) within the interval [4, 5].

7. If the parent functions is f(x) = mx + b, what is the value of the parameter m for the line passing through the points (-2, 7) and (4, 3)?

A.-9

B. -3/2

Consider this function for cell duplication. The cells duplicate every minute. Describe the parameters of this function.

a, r $f(x) = 75(2)^{x}$

- The 75 is the initial number of cells, and the 2 indicates that the number of cells doubles every minute.
- B. The 75 is the initial number of cells, and the 2 indicates that the number of cells increases by 2 every minute.
- C. The 75 is the number of cells at 1 minute, and the 2 indicates that the number of cells doubles every minute.
- D. The 75 is the number of cells at 1 minute, and the 2 indicates that the number of cells increases by 2 every minute.
- 9. What is the y-intercept of the graph of $h(x) = 2^x 4$?

2-4= -3

A. (0, -4)

B.) (0, -3)

C. (0, 1)

D. (0, 2)

10. What is the range of the graph of f(x) = -3(x-4)? No exponent = linear

A. (-3, 4)

B. (-3, ∞)

C. $(-\infty, 4)$

11. Which function is modeled in this table?

A. f(x) = x + 7

B. f(x) = 5x + 8

C. $f(x) = (8)^x$

D.) $f(x) = 8/5(5)^{x}$

Only one that multiplies by 5

X	f(x)	
1	8 -)×5
2	40)xs
3	200	,
4	1,000	1×5

12. If f(12) = 4(12) - 20, which function gives f(x)?

A. $f(x) = 4x^2 - 20$

B. f(x) = 4x - 20C f(x) = 4x - 20

D. $f(x) = 4x^2 + 12x - 20$

13. Which function has a range of $f(x) \le \frac{3}{4}$?

A. $f(x) = \frac{3}{4}x + 5$

C. $f(x) = x^2 - \frac{3}{4}$

D. $f(x) = \frac{3}{4} - 5x$

B.) f(x) = -x2 + 3/4
Zy is positive -x means it is headed down

Smaller

14. A sample of 1000 bacteria becomes infected with a virus. Each day, one-fourth of the Numbers (- bacteria sample dies due to the virus. A biologist studying the bacteria models the are getting population of the bacteria with the function $P(t) = 1000(0.75)^t$, where t is the time, in days.

What is the range of this function in this context?

- A. Any real number such that $t \ge 0$
- B. Any whole number such that $t \ge 0$
- C. Any real number such that $0 \le P(t) \le 1000$
- D. Any whole number such that $0 \le P(t) \le 1000$

I can't have a a bacteria

15. The graph shows the height, y, in meters, of a rocket above sea level in terms of the time, t, in seconds, since it was launched. The rocket landed at sea level.

What does the x-intercept represent in this situation?

- A. The height from which the rocket was launched
- B.) The time it took the rocket to return to the ground
 - C. The total distance the rocket flew while it was in fliaht
 - D. The time it took the rocket to reach the highest point in its flight

