Name: ____

Pad .

Date:

EOC Practice Problems

1. A certain population of bacteria has an average growth rate of 2%. The formula for the growth of the bacteria's population is $A = P_0 (1.02)^{\dagger}$ where P_0 is the original population and t is the time in hours.

If you begin with 200 bacteria, about how many bacteria will there be after 100 hours?

A. 7

B. 272

D. 20,000

2. Which function represents this sequence?

n	1	2	3	4	5	
a	6	18	54	162	486	2 2 2

 $Q_n = Q_n(r)^{n-1}$ $Q_n = G(3)^{n-1}$

A. $f(n) = 3^{n-1}$

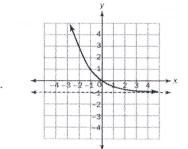
B.
$$f(n) = 6^{n-1}$$

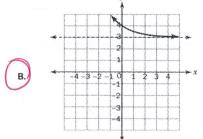
C.
$$f(n) = 3(6^{n-1})$$

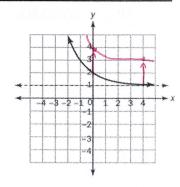
$$D.f(n) = 6(3^{n-1})$$

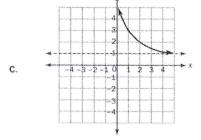
3. The points (0, 1), (1, 5), (2, 25), and (3, 125) are on the graph of a function. Which equation represents that function? Express From unit 6 of plus in x's to Fermulus

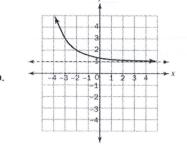
A.
$$f(x) = 2^x$$

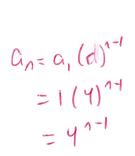

B.
$$f(x) = 3^x$$

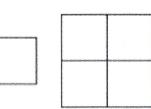

C.
$$f(x) = 4^x$$

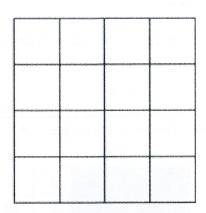

Up 2


$$D.f(x) = 5^x$$


4. The function f(x) is graphed below. Which graph shows f(x) + 2?







- Which function shows the function $f(x) = 3^x$ being translated 5 units to the left?
 - A. $f(x) = 3^{x} 5$
- B) $f(x) = 3^{(x+5)}$
- C. $f(x) = 3^{(x-5)}$
- D. $f(x) = 3^{x} + 5$

6. Consider this pattern.

Which function represents the sequence that represents the pattern?

- A. $f(n) = 4^{n-1}$
- B. $f(n) = 4^{(a_{n}-1)}$
- C. $f(n) = (a_n)(4^{n-1})$
- D. $f(n) = (a_n)^4$

- 7. Which function is modeled in this table?
 - A. $f(x) = 1000(0.80)^{x}$
- B. $f(x) = 1000(0.20)^{x}$
- C. $f(x) = 1000(0.80)^{x-1}$
- D. $f(x) = 1000(0.20)^{x-1}$

an=	$a_i(r)^{n-1}$	
*Allen Jane**	1000(0.8) 1-1	

	f(x)	
1	1000 、	WAR
2	800 4	×0.8
3	640	1)×0.8
4	512)×0.8

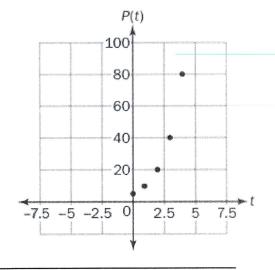
800 - 0.8

- 8. Which explicit formula describes the pattern in this table?
 - A. C = 6d
 - B. C = d + 6
 - C = 6d


- - = 6
- $C_n = G_1(\mathbb{P})^{n-1}$ or plus in d to the Formulus and check

d	С	
0	1.	١٧
1.	6	/^^
2	36 5	!×t
3	216) ×

- 9. If $f(12) = 100(0.50)^{\frac{1}{12}}$, which expression gives f(x)?
 - A. $f(x) = 0.50^{x}$
 - B. $f(x) = 100^{x}$
 - C. $f(x) = 100(x)^{12}$
 - D. $f(x) = 100(0.50)^{x}$


10. A population of squirrels doubles every year. Initially, there were 5 squirrels. A biologist studying the squirrels created a function to model their population growth: $P(t) = 5(2)^{t}$ where t is the time in years. The graph of the function is shown.

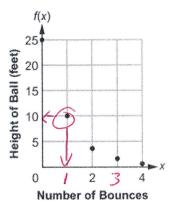
What is the range of the function?

- B. Any whole number greater than 0
- C) Any whole number greater than 5
- D.) Any whole number greater than or equal to 5

at the start

11. The function graphed on this coordinate grid shows f(x), the height of a dropped ball, in feet, after its xth bounce.

On which bounce was the height of the ball 10 feet?



Bounce 1

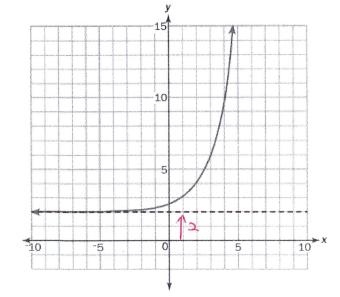
B. Bounce 2

C. Bounce 3

D. Bounce 4

12. Look at the graph.

Which equation represents this graph?


A.
$$y = 2^{(x+1)} - 2$$

C.
$$y = 2^{(x+2)} - 1$$

$$B.y = 2^{(x-1)} + 2$$

D.
$$y = 2^{(x-2)} + 1$$

B.y = 2(x-1) + 2 Only one that goes up 2

ng efonius.

a a man of all a