Name: \qquad Date: \qquad EOC Practice Problems

1. A certain population of bacteria has an average growth rate of 2%. The formula for the growth of the bacteria's population is $A=P_{0}(1.02)^{\dagger}$ where P_{0} is the original population and \dagger is the time in hours.

If you begin with 200 bacteria, about how many bacteria will there be after 100 hours?
A. 7
B. 272
C. 1,449
D. 20,000
2. Which function represents this sequence?

n	1	2	3	4	5	\ldots
a_{n}	6	18	54	162	486	\ldots

A. $f(n)=3^{n-1}$
B. $f(n)=6^{n-1}$
C. $f(n)=3\left(6^{n-1}\right)$
D. $f(n)=6\left(3^{n-1}\right)$
3. The points $(0,1),(1,5),(2,25)$, and $(3,125)$ are on the graph of a function. Which equation represents that function?
A. $f(x)=2^{x}$
B. $f(x)=3^{x}$
C. $f(x)=4^{x}$
D. $f(x)=5^{x}$
4. The function $f(x)$ is graphed below. Which graph shows $f(x)+2$?
A.

B.

c.

D.

5. Which function shows the function $f(x)=3 x$ being translated 5 units to the left?
A. $f(x)=3^{x}-5$
B. $f(x)=3^{(x+5)}$
C. $f(x)=3^{(x-5)}$
D. $f(x)=3^{x}+5$
6. Consider this pattern.

Which function represents the sequence that represents the pattern?
A. $f(n)=4^{n-1}$
B. $f(n)=4\left(a_{n-1)}\right.$
C. $f(n)=\left(a_{n}\right)\left(4^{n-1}\right)$
D. $f(n)=\left(a_{n}\right)^{4}$
7. Which function is modeled in this table?
A. $f(x)=1000(0.80)^{x}$
B. $f(x)=1000(0.20)^{x}$
C. $f(x)=1000(0.80)^{x-1}$
D. $f(x)=1000(0.20)^{x-1}$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
1	1000
2	800
3	640
4	512

8. Which explicit formula describes the pattern in this table?
A. $C=6 d$
B. $C=d+6$
C. $C=6^{d}$
D. $C=d^{6}$

\boldsymbol{d}	\boldsymbol{c}
0	1
1	6
2	36
3	216

9. If $f(12)=100(0.50)^{12}$, which expression gives $f(x)$?
A. $f(x)=0.50^{x}$
B. $f(x)=100^{x}$
C. $f(x)=100(x)^{12}$
D. $f(x)=100(0.50)^{x}$
10. A population of squirrels doubles every year. Initially, there were 5 squirrels. A biologist studying the squirrels created a function to model their population growth: $P(t)=5(2)^{\dagger}$ where t is the time in years. The graph of the function is shown.

What is the range of the function?
A. Any real number
B. Any whole number greater than 0
C. Any whole number greater than 5
D. Any whole number greater than or equal to 5

11. The function graphed on this coordinate grid shows $f(x)$, the height of a dropped ball, in feet, after its xth bounce.

On which bounce was the height of the ball 10 feet?
A. Bounce 1
B. Bounce 2
C. Bounce 3
D. Bounce 4

12. Look at the graph.

Which equation represents this graph?
A. $y=2^{(x+1)}-2$
B. $y=2^{(x-1)}+2$
C. $y=2^{(x+2)}-1$
D. $y=2^{(x-2)}+1$

