Name: ____

_____ Date: ____

Exponential Growth and Decay – Applications

Exponential Models

$$A = P(1+r)^t$$

$$A = P(1-r)^t$$

$$1-r =$$

- 1. In 1990, the cost of tuition at a state university was \$4300. During the next 8 years, the tuition rose 4% each year.
- a. Growth or decay? What is the _____ factor?
- b. Write a model the gives the tuition y (in dollars) t years after 1990.
- c. How much would it cost to attend college in 2000? In 2007?
- d. How long it will take for tuition to reach \$6000?
- 2. A 2011 Kia Sorrento depreciates at a rate of 33.6% per year. The car was bought for \$32,000.
- a. Growth of decay? What is the _____ factor?
- b. Write a model the gives the value of the cary (in dollars) t years after 2011.
- c. How much is the car worth now? In 2012?
- d. How long will it take for the car to be worth half?

A = P	1+	$\left(\frac{r}{r}\right)^{nt}$
, , ,	(n)

A = _____

P = _____

† = _____

r = ____

n = ____

COMPOUND INTEREST:

Compounded:	n
Annually	
Semi-Annually	
Quarterly	
Monthly	
Weekly	
Daily	

Δ		Port
$\overline{}$	_	Γ

A = _____

P = _____

t = _____

r = _____

e = _____

- 3. You invest your \$1000 graduation money. A bank is offering 4% interest. Calculate how much money you have after 10 years if the bank compounds:
 - a. Quarterly
 - b. Monthly
 - c. Daily
 - d. Continuously