\qquad

Finding Exponential Equations From Graphs

We've spent some time going from an equation to a graph, but today we're going to work backwards. To write the equation of an exponential graph in the form $f(x)=a \bullet b^{x-h}+k$, we need to find a, b, h, and k, then plug them in.

- a : If it zooms up, a is positive. If it zooms down, a is negative. We aren't going to deal with stretch/shrink this semester.
- b: Look for the WHOLE NUMBER distances from the asymptote to the graph. What's the common ratio? That's your b term.
- h: Look for the $(0,1)$ equivalent (exactly 1 unit up from the asymptote. Has it moved left/right from the y-axis? If so, that's your h value.
- k: Look at your asymptote.

Get all 4 pieces, plug them in, and walk away. Let's try it out!!!!!
A)
$h=$ \qquad
$\mathrm{k}=$ \qquad
B)

$a=$ \qquad
$b=$ \qquad
$\mathrm{h}=$ \qquad
$k=$ \qquad

Equation: \qquad
\qquad

\qquad
3)

\qquad
5)

\qquad
2)

6)

