\qquad
\qquad

Regression

1. Students in Ms. Garth's Algebra II class wanted to see if there are correlations between test scores and time spent watching television. The students created a table in which they recorded 13 student's average number of hours per week spent watching television and scores on a test. Use the actual data collected by the students in Ms. Garth's class, as shown in the table below, to answer the following questions.

TV hrs/week (average)	30	12	30	20	10	20	15	12	15	11	16	20	19
Test Scores	60	80	65	85	100	78	75	95	75	90	90	80	75

a) Find the best fitting linear model that represents the data and the correlations coefficient.
b) Identify the y-intercept. What does it represent in the context of the problem?
c) Using this model, what is the estimated test score of a student who watches TV for 35 hours?
d) Using this model, what is the highest number of hours a student can watch TV and still pass the test (make a 70)?
2. The town planners designed a town for an optimal growth of 8% per year. Below is a table representing the growth (in thousands) from 1997 to 2003.

Year	Population
1997	50
1998	54
1999	58
2000	63
2001	68
2002	73.5
2003	79.3

a) Find the best fitting exponential model that represents the data and the correlation coefficient.
b) Using this model, what is the predicted population in the year 2017?
c) Using this model, what was the estimated population in 1977?
d) In what year will the population have doubled?

This table shows the population of a city every ten years since 1970.

Years Since 1970, x	Population (In thousands), y
0	489
10	801
20	1,202
30	1,998
40	2,959

5. Which of the following is best modeled by a quadratic function?
A. Relationship between circumference and diameter.
B. Relationship between area of a square and side length.
C. Relationship between diagonal of a square and side length.
D. Relationship between volume of a cube and side length.
6. If y is a quadratic function of x, which value completes the table?
A. 12
B. 20
C. 44
D. 48

x	-2	0	2	4	6
y	-8	0	12	28	

7. The graph of a quadratic function having the form $f(x)=a x^{2}+b x+c$ passes through the points $(0,-8),(3,10)$, and $(6,34)$. What is the value of the function when $\mathbf{x}=\mathbf{- 3}$?
A. -32
B. -26
C. -20
D. 10
8. Which is the quadratic equation the best fits the scatterplot?
A. $f(x)=(x-3)^{2}-4$
B. $f(x)=(x+3)^{2}+4$
C. $f(x)=(x-4)^{2}-3$
D. $f(x)=(x+4)^{2}+3$

