Name:

Date:

Regression

1. Students in Ms. Garth's Algebra II class wanted to see if there are correlations between test scores and time spent watching television. The students created a table in which they recorded 13 student's average number of hours per week spent watching television and scores on a test. Use the actual data collected by the students in Ms. Garth's class, as shown in the table below, to answer the following questions.

TV hrs/week (average)	30	12	30	20	10	20	15	12	15	11	16	20	19
Test Scores	60	80	65	85	100	78	75	95	75	90	90	80	75

- a) Find the best fitting linear model that represents the data and the correlations coefficient. $y = -1.43 \times +105.98$
- b) Identify the y-intercept. What does it represent in the context of the problem?

y-int = 105,98 It represents the idea that someone who watched O hors of TV would be expected to set a 105,98%.

C) Using this model, what is the estimated test score of a student who watches TV for 35

- c) Using this model, what is the estimated test score of a student who watches TV for 35 hours? F(35) = 55.80
- d) Using this model, what is the highest number of hours a student can watch TV and still pass the test (make a 70)? $70 = -1.43 \times +105.98 \times = 25.16 \text{ hours}$
- 2. The town planners designed a town for an optimal growth of 8% per year. Below is a table representing the growth (in thousands) from 1997 to 2003.

Year	Population				
1997	50				
1998	54				
1999	58				
2000	63				
2001	68				
2002	73.5	a comment			
2003	79.3				

- a) Find the best fitting exponential model that represents the data and the correlation coefficient.
- b) Using this model, what is the predicted population in the year 2017?
- c) Using this model, what was the estimated population in 1977?
- d) In what year will the population have doubled?

This table shows the population of a city every ten years since 1970.

3. Find the best-fitting quadratic model for the data. Round to 3 decimal places.

Y=1,209x2 + 12,999x +504,257

4. Using this model, what will be the estimated population in 2020?

Years Since 1970,	Population (In thousands).
0	489
10	801
20	1,202
30	1,998
40	2,959

- 5. Which of the following is best modeled by a quadratic function?

 - B. Relationship between area of a square and side length. Area = Units

 C. Relationship between diagonal of a square and side length.
 - C) Relationship between diagonal of a square and side length.
 - D. Relationship between volume of a cube and side length.
- 6. If y is a quadratic function of x, which value completes the table?
 - A. 12
 - B. 20
 - C. 44
 - D. 48

Х	-2	0	2	4	6	
Y	-8	0	12	28		

- 7. The graph of a quadratic function having the form $f(x) = ax^2 + bx + c$ passes through the points (0, -8), (3, 10), and (6, 34). What is the value of the function when x = -3?
 - A. -32

B. -26

D. 10

8. Which is the quadratic equation the best fits the scatterplot?

A.
$$f(x) = (x-3)^2 - 4$$

B.
$$f(x) = (x+3)^2 + 4$$

C.
$$f(x) = (x-4)^2 - 3$$

D.
$$f(x) = (x+4)^2 + 3$$

