\qquad Date:

Graph by hand.

1. $f(x)=-x^{2}+2 x-1$

Characteristics	
A.O.S.	
Vertex:	
Domain:	
Range:	
y-intercept(s):	
Interval of Increase:	
Interval of Decrease:	
Rate of change from	
$0 \leq x \leq 2:$	
Rate of change from	
$[1,3]:$	

Graph by calculator.

2. $f(x)=x^{2}-6 x+5$

Characteristics	
A.O.S.	
Vertex:	
Domain:	
Range:	
Zeros:	
Interval of Increase:	
Interval of Decrease:	
Rate of change from	
$[0,2]:$	
Rate of change from	
$4 \leq x \leq 5:$	

Directions:

1. Draw a picture to represent the situation (it will be a parabola).
2. Determine which point(s) on the graph would answer the question.
3. Solve for the requested point.
4. Write final answer in sentence form.
5. A missile is launched along a path determined by the equation $f(x)=-8 x^{2}+216 x$, where $f(x)$ is the height of the missile in feet x seconds after it has been launched. A plane is flying at a height of 1200 feet. Is the plane in danger? Why or why not?
6. An Olympian shoots an arrow upward at a speed of 188 feet per second from a platform. The pathway of the arrow can be represented by the equation $h(t)=-16 t^{2}+188 t+12$, where h is the height and t is the time in seconds. Describe its position at 7 seconds.
7. How long is the arrow from \#4 in the air?
8. Brenda launches a model rocket with an initial speed of 112 feet per second. The launch can be modeled using the formula $h(t)=-16 t^{2}+v t$. When does it reach its maximum height?
