Name: _____ Date: _____

Graph	by	hand.
-------	----	-------

1.
$$f(x) = -x^2 + 2x - 1$$

Characteristics		
A.O.S.		
Vertex:		
Domain:		
Range:		
x-intercept(s):		
y-intercept:		
Interval of Increase:		
Interval of Decrease:		
Rate of change from $0 \le x \le 2$:		
Rate of change from [1, 3]:		

Graph by calculator.

2.
$$f(x) = x^2 - 6x + 5$$

Characteristics		
A.O.S.		
Vertex:		
Domain:		
Range:		
Zeros:		
y-intercept:		
Interval of Increase:		
Interval of Decrease:		
Rate of change from [0, 2]:		
Rate of change from $4 \le x \le 5$:		

Directions:

- 1. Draw a picture to represent the situation (it will be a parabola).
- 2. Determine which point(s) on the graph would answer the question.
- 3. Solve for the requested point.
- 4. Write final answer in sentence form.
- 3. A missile is launched along a path determined by the equation $f(x) = -8x^2 + 216x$, where f(x) is the height of the missile in feet x seconds after it has been launched. A plane is flying at a height of 1200 feet. Is the plane in danger? Why or why not?

4. An Olympian shoots an arrow upward at a speed of 188 feet per second from a platform. The pathway of the arrow can be represented by the equation $h(t) = -16t^2 + 188t + 12$, where *h* is the height and *t* is the time in seconds. Describe its position at 7 seconds.

5. How long is the arrow from #4 in the air?

6. Brenda launches a model rocket with an initial speed of 112 feet per second. The launch can be modeled using the formula $h(t) = -16t^2 + vt$. When does it reach its maximum height?