\qquad Date: \qquad
Graphing Quadratic Equations in Standard Form

1. $f(x)=x^{2}-4 x+5 \quad$ *Graph By Hand*

Characteristics	
A.O.S.	
Vertex:	
Domain:	
Range:	
Solution(s):	
y-intercept:	
Interval of Increase:	
Interval of Decrease:	
Rate of change from	
$3 \leq x \leq 4:$	
Rate of change from [0, 2]:	
Which rate of change is steeper?	

2. $f(x)=-x^{2}+6 x-8 \quad * G r a p h ~ i n ~ C a l c * ~$

Characteristics	
A.O.S.	
Vertex:	
Domain:	
Range:	
Zero(s):	
y-intercept:	
Interval of Increase:	
Interval of Decrease:	
Rate of change from	
$[3,4]:$	
Rate of change from $4 \leq x \leq 5:$	
Which rate of change is steeper?	

3. A baker has modeled the monthly operating costs for making wedding cakes by the function $\mathrm{y}=0.5 \mathrm{x}^{2}-12 \mathrm{x}+150$ where y is the total cost in dollars and x is the number of cakes prepared.
A. Find the vertex and axis of symmetry. The vertex would represent (Cakes Prepared, $\$$ Cost).
B. What is the minimum monthly operating cost?
C. How many cakes should be prepared each month to yield the minimum operating cost?
D. What are the baker's costs if he/she makes no cakes (zero)?
4. The path of a soccer ball is modeled by the function $h(x)=-0.005 x^{2}+0.25 x$, where h is the height in meters and x is the horizontal distance that the ball travels in meters. What is the maximum height that the ball reaches? Hint: start by finding the vertex.
5. The function $\mathrm{A}(\mathrm{x})=\mathrm{x}(10-\mathrm{x})$ describes the area A of a rectangular flower garden, where x is its width in yards. What is the maximum area of the garden? Hint: get your equation in standard form $1^{\text {st }}$ and then start finding the vertex.
6. A record label uses the following function to model the sales of a new release.

$$
a(t)=-90 t^{2}+8100 t
$$

The number of albums sold is a function of time, t, in days. On which day were the most albums sold? What is the maximum number of albums sold on that day?

