\qquad
Notes: Area of Triangles/Applications of LOS and LOC
Date: \qquad

Two ways to find the Area of a triangle:

1. $A_{\Delta}=\frac{1}{2} a b \sin C \quad$ Given 2 sides and 1 angle - all letters different; $a, b=$ sides, $C=$ angle

Example: Find the area: $\mathrm{p}=6.8 \mathrm{in}, \mathrm{k}=16 \mathrm{in}, \mathrm{H}=111^{\circ}$
\square

2. Heron's Area Formula - Given 3 sides of the triangle

The area of a triangle with sides of length a, b, and c is
$A_{\Delta}=\sqrt{s(s-a)(s-b)(s-c)}$
Where $s=\frac{1}{2}(a+b+c)$. The variable s is called the semiperimeter, or half-perimeter, of the triangle
Example: Find the area of the triangle to the right (nearest tenth).
Step 1: Find the semiperimeter:

Step 2: Use Heron's formula:

Exercises: Find the area of the triangle to the nearest tenth (show work).

1. $x=14, y=28, Z=87^{\circ}$
2.

Example 1: A boat in distress at sea is sighted from two coast guard observation posts, A and B, on the shore. The angle at post A formed by lines of sight to post B and the boat is 41.67°. The angle at post B formed by the lines of sight to post A and the boat is 36.17°. The distance from Post A to Post B is 24 km . Find the distance from Post A to the boat.

Example 2: Two ships leave a port at 8:00AM. One travels at a bearing of $\mathrm{N} 50^{\circ} \mathrm{W}$ at 15 mph and the other travels at a bearing of $565^{\circ} \mathrm{W}$ at 18 mph . Approximate how far apart they are at noon that day.

Example 3: A boat is sailing due east parallel to the shoreline. At a given time the bearing to the lighthouse is $\mathrm{S} 50^{\circ} \mathrm{E}$. The boat travels 10 miles and the bearing is now $\mathrm{S} 45^{\circ} \mathrm{E}$. Find the distance from the boat to the lighthouse (d)

