$$
f(x)=a(x-h)^{2}+k
$$

Vertex: (h, k)
 Axis of Symmetry: $\mathrm{x}=\mathrm{h}$

Steps to Graphing in VERTEX form:

- Find the vertex. Plot it.
- Find the axis of symmetry. Graph this lightly as a dashed vertical line.
- Use the 1-3-5 rule (adjust for stretch/shrink).
- Connect in a u-shape with arrows at each end.

Graph \& identify the vertex and axis of symmetry.

1. $f(x)=(x+2)^{2}+1$

Vertex: \qquad
Axis of Symmetry: $x=$ \qquad

2. $f(x)=(x-4)^{2}-1$

Vertex: \qquad
Axis of Symmetry: $x=$ \qquad

Graph \& identify the vertex and axis of symmetry.
3. $f(x)=-(x-1)^{2}+2$

Vertex: \qquad
Axis of Symmetry: $x=$ \qquad

4. $f(x)=\frac{1}{2}(x-2)^{2}+3$

Vertex: \qquad
Axis of Symmetry: $x=$ \qquad

Writing Equations of Quadratics in Vertex Form

$$
f(x)=\underset{\text { vertex: }(h, k)}{a(x-h)^{2}}+k
$$

Given the graph of the quadratic, find $a, h, \& k$. Then write the equation in vertex form.
5.

- $a=$ \qquad
- $\mathrm{h}=$ \qquad
- $k=$ \qquad

- $f(x)=$

7.

- $a=$ \qquad
- $\mathrm{h}=$ \qquad
- $k=$ \qquad

8.

- $a=$ \qquad
- $\mathrm{h}=$ \qquad
- $k=$ \qquad

- $f(x)=$

