$$f(x) = a(x-h)^2 + k$$

Vertex: (h, k) Axis of Symmetry: x = h

Steps to Graphing in VERTEX form:

- Find the vertex. Plot it.
- Find the axis of symmetry. Graph this lightly as a dashed vertical line.
- Use the 1-3-5 rule (adjust for stretch/shrink).
- Connect in a u-shape with arrows at each end.

Graph & identify the vertex and axis of symmetry.

1.
$$f(x) = (x+2)^2 + 1$$

Vertex: _____

Axis of Symmetry: x =

Graph & identify the vertex and axis of symmetry.

3.
$$f(x) = -(x-1)^2 + 2$$

Vertex:

Axis of Symmetry: x = ____

Vertex: _____

Axis of Symmetry: x = ___

Writing Equations of Quadratics in Vertex Form

$$f(x) = a(x-h)^2 + k$$

Vertex: (h, k)

Given the graph of the quadratic, find a, h, & k. Then write the equation in vertex form.

5.

- a = ____
- h = ____
- k = ____
- f(x) =

- o. • a = ____
 - h =
 - k = ____

• f(x) =

7.

- a = ____
- h = ____
- k = ____

•
$$f(x) =$$

- 8.
- d = ____
- h = ____
- k = ____

• f(x) =