\qquad Date: \qquad

Quadratic Applications - Building and Solving Functions

Directions:

1. Draw a picture to represent the situation (it will be a parabola).
2. Determine which point(s) on the graph would answer the question.
3. Solve for the requested point.
4. You drop a ball off a cliff at 320 ft . How long does it take the ball to hit the ground? $h(t)=-16 t^{2}+h_{0}$
5. Hugh Betcha launched a model rocket with an initial speed of 88 feet per second. After how many seconds will the rocket be 40 feet high? $h(t)=-16 t^{2}+v t$
6. A ball is thrown into the air from a height of 4 feet at time $\dagger=0$. The function that models this situation is $h(t)=-16 t^{2}+63 t+4$, where t is measured in seconds and h is the height in feet.
a) What is the height of the ball after 2 seconds?
b) When will the ball reach a height of 50 feet?
c) When will the ball hit the ground?

Applications Practice

4. You drop a ball off a cliff at 500 ft . How long does it take the ball to hit the ground? $h(t)=-16 t^{2}+500$
5. You launched a model rocket with an initial speed of 88 feet per second. After how many seconds will the rocket be 120 feet high? $h(t)=-16 t^{2}+v t$

A ball is launched into the air from a height of 256 feet at time $t=0$ with the initial velocity of 96 feet per second. The function that models this situation is $h(t)=-16 t^{2}+v t+h_{0}$, where t is measured in seconds and h is the height in feet.
6. What is the height of the ball after 4 seconds?
7. When will the ball reach a height of 144 feet?
8. When will the ball hit the ground?

