Name: \qquad

Date: \qquad

What you need to know \& be able to do	Things to remember	Problem	
Transformations	Negative in front reflects across x-axis Number in front stretches or shrinks Number inside parenthesis moves left or right Number alone moves up or down	Describe the transformations: $f(x)=-\frac{1}{3}(x+2)^{2}+1$	Describe the transformations: $f(x)=(2)^{x-4}+3$
		3. Describe the transformations made to $\mathrm{f}(\mathrm{x})$ to create the following functions. $\begin{aligned} & g(x)=\frac{1}{4}(x-2)^{2}+5 \\ & a= \\ & h= \\ & k= \\ & \hline \end{aligned}$	4. Write the equation of a quadratic that has a vertex at $(-5,-3)$, opens up, and is stretched by a factor of 2 .
Intersections	Graphically: See where the two intersect and list as ordered pairs. Algebraically: Set the equations equal to each other and solve for x. Substitute each x back in and solve for y. List as ordered pairs.		12 $\begin{aligned} & y=x^{2}-x-6 \\ & y=2 x-2 \end{aligned}$
Comparing Functions and Sequences	- Starting value= Function - Llnear $y=m x+b$ - Exponential $y=a b^{x}$ - First Time = Sequence	1. Taylor and Jordan are competing to see who can run the most during a week. On Day 1, Taylor runs 3 miles then increases his mileage each day by 4 miles. On Day 1, Jonathan runs $1 / 2$ a mile and doubles his miles each day. Write the rule for the sequence that represents how many miles each runner will run in terms of days. Taylor: Jordan: Who will reach 10 miles first?	

