Date

Comparing Linear and Exponential Equations

Linear Rate of Change ALWAYS the slope.

Let's fill out the table to compare linear, quadratic and exponential functions over time.

R.o.	C :	- X - Xr	/ -	will always	2 1 1 1	New York
		X2 X1	EI	Will always	3,00	these

1. Calculate and compare the slopes for each function from $x_1 = 0$ to $x_2 = 1$.

х	Linear y = <mark>2</mark> k + 2	Quadratic $y = x^2 + 2$	Exponential y = 2×
0	2	2,	
1 /	4	3	2
2	6	6	4
3	8		8
4	10	18	16
5	12	27	32

Linear's R.O.C

Quadratic's R.O.C.

$$\frac{4-2}{1-0} = \frac{2}{1} = 2$$

$$\frac{3-2}{1-0} = \frac{1}{1} = \frac{1}{1}$$

$$\frac{2-1}{1-0} = \frac{1}{1} = 1$$

Whose R.O.C. is the steepest? Linea (

2. Calculate and compare the slopes for each function from $x_1 = 2$ to $x_2 = 3$.

Linear's R.O.C

Quadratic's R.O.C.

$$\frac{8-6}{3-2}=\frac{2}{1}=2$$

$$\frac{11-6}{3-2} = \frac{5}{1} = 5$$

Whose R.O.C. is the steepest? Quadratic

3. Calculate and compare the slopes for each function from $x_1 = 4$ to $x_2 = 5$.

Linear's R.O.C

Quadratic's R.O.C.

$$\frac{27-18}{5-4} = \frac{9}{1} = 9$$

$$\frac{32-16}{5-4} = \frac{16}{1} = 16$$

Whose R.O.C. is the steepest? Exposertial

Linear - Adds the same thing every time *VERY IMPORATANT TO KNOW!

Quadratic - adds BIGGER numbers every time

Conclusion over a LONG period of time the expanding the value of the other functions.

function will exceed

Which function increases faster, f(x) = 2x + 1 or $g(x) = 2^x - 1$? Make a table of values to help you decide.

Х	f(x) = 2x + 1
-1	-1
0	1
1	3
2	5
3	7
4	9

X	g(x) = 2x - 1	
-1	-12	上
0	0	1
1	(2
2	3	4
3	7	8
4	15	16

Where will the two functions intersect?

Compare each pair of functions based on their rate of change or y-intercept. Shade the correct statement at the bottom of each box in green.

4. For each representation below, determine if they are linear or exponential, and then write the equations.

Problem 1, Function 1	Problem 2, Function 1	Problem 3, Function 2
Linear or Exponential?	Linear or Exponential?	Linear or Exponential?
f(x) =	f(x) =	f(x) =

- **5.** What is the key in determining if a scenario is linear or exponential? Circle ALL of the exponential representations above in blue, and put a box around the linear representations in red.
- **6.** Based on the graph on the right, which statement is not true?

A Functions f and g have the same x-intercept.

- B. The ordered pair (1, 2) is a solution for f(x).
- C. The ordered pair (2, 7) is a solution for g(x).
- D. The value of f(x) begins to exceed g(x) during the interval x = 1 and x = 2.

