Comparing Linear and Exponential Equations

Let's fill out the table to compare linear,		x	Linear y = 2x + 2	Quadratic y = x ² + 2	Exponential y = 2 ^x
quadratic and exponential funct	ions over time.	0		-	
		1			
		2			
1 Calculate and compare t	ha danaa far	3			
1. Calculate and compare i	to x ₂ = 1	4			
	$10 x_2 - 1$.	5			
Linear's R.O.C	Quadratic's R.O.C.		Expone	ntial's R.O.C.	
Whose R.O.C. is the stee	pest?				

2. Calculate and compare the slopes for each function from $x_1 = 2$ to $x_2 = 3$.

Linear's R.O.C	Quadratic's R.O.C.	Exponential's R.O.C.			
Whose R.O.C. is the steepest?					

3. Calculate and compare the slopes for each function from $x_1 = 4$ to $x_2 = 5$.

Linear's R.O.C	Quadratic's R.O.C.	Exponential's R.O.C.		
Whose R.O.C. is the steepest?				

★VERY IMPORATANT TO KNOW!

Conclusion over a LONG period of time the ______ function will exceed the value of the other functions.

Which function increases faster, f(x) = 2x + 1 or $g(x) = 2^x - 1$? Make a table of values to help you decide.

х	f(x) = 2x + 1
-1	
0	
1	
2	
3	
4	

Where will the two functions intersect?

х	$g(x) = 2^{x} - 1$
-1	
0	
1	
2	
3	
4	

Compare each pair of functions based on their rate of change or y-intercept. Shade the correct statement at the bottom of each box in green.

4. For each representation below, determine if they are linear or exponential, and then write the equations.

Problem 1, Function 1	Problem 2, Function 1	Problem 3, Function 2
Linear or Exponential?	Linear or Exponential?	Linear or Exponential?
f(x) =	f(x) =	f(x) =

5. What is the key in determining if a scenario is linear or exponential? Circle ALL of the exponential representations above in blue, and put a box around the linear representations in red.

6. Based on the graph on the right, which statement is not true?

- A. Functions f and g have the same x-intercept.
- B. The ordered pair (1, 2) is a solution for f(x).
- C. The ordered pair (2, 7) is a solution for g(x).
- D. The value of f(x) begins to exceed g(x) during the interval

x = 1 and x = 2.

