GPS PreCalculus: Graphing Trig
Name \qquad Notes - for Writing Equations for $\sin / c o s$
To find the equation given a graph you are going backwards from graphing.
You need to be able to find a, b, c, and d for the standard form:

$$
f(x)=a \sin b(x-c)+d \text { or } f(x)=a \cos b(x-c)+d
$$

To write the equation, you need to do the following:

1. Find the middle of the graph (sinusoidal axis)
2. Determine if you are looking for a sine curve or a cosine curve
3. Locate your starting point and ending point
4. Then, find each of the following:
$a=$ \qquad (need to know amplitude) -
$b=$ \qquad (need to know period) -
$c=$ \qquad (need to know starting point for x) -
$d=$ \qquad (need to know how the graph shifted from sinusoidal to x-axis)
a.) Find $a \sin (x)$ function:
a - Amplitude:
b - Period (end-start):
c - HS (start):
d - VS from x-axis:

b.) Find $a+\cos (x)$ function:
a - Amplitude:
b - Period (end-start):
c-HS (start):
d - VS from x-axis:

c.) Find $a-\cos (x)$ function:
a - Amplitude:
b - Period (end-start):
c - HS (start):
d - VS from x-axis:

GPS PreCalculus: Graphing Trig Notes - for Writing Equations for $\sin /$ cos
Example 2: Write the equation
a - Amplitude:
b - Period (end-start):
c - HS (start):
d - VS from x-axis:
\qquad

Example 2: Find $a+\cos (x)$ function (radians)
Amplitude (a):
Period (b):

HS (c):
VS (d):

Ferris Wheel Problem As you ride the Ferris wheel, your distance from the ground varies sinusoidally with time. Let t be the number of seconds that have elapsed since the Ferris wheel started. You find that it takes you 2 seconds to reach the top, 25 feet above the ground, and that the wheel makes a revolution once every 10 seconds. The diameter of the wheel is 20 feet.
a. Sketch a graph of this sinusoid.
b. Write an equation of the sinusoid.
i. Predict your height above the ground when: $t=3, t=6, t=9$

