\qquad Date: \qquad

Exponential Growth and Decay - Applications

Exponential Models

$A=P(1-r)^{t}$
$A=$
\qquad
$t=$ \qquad
$r=$ \qquad

$$
1-r=
$$

\qquad

1. In 1990, the cost of tuition at a state university was $\$ 4300$. During the next 8 years, the tuition rose 4% each year.
a. Growth or decay? What is the \qquad factor?
b. Write a model the gives the tuition y (in dollars) \dagger years after 1990.
c. How much would it cost to attend college in 2000? In 2007?
d. How long it will take for tuition to reach $\$ 6000$?
2. A 2011 Kia Sorrento depreciates at a rate of 33.6% per year. The car was bought for $\$ 32,000$.
a. Growth of decay? What is the \qquad factor?
b. Write a model the gives the value of the car y (in dollars) t years after 2011.
c. How much is the car worth now? In 2012?
d. How long will it take for the car to be worth half?

$A=P\left(1+\frac{r}{n}\right)^{n t}$	COMPOUND INTEREST:	
	Compounded:	n
	Annually	
$P=$	Semi-Annually	
	Quarterly	
$t=$	Monthly	
	Weekly	
$r=$	Daily	
$n=$		

3. You invest your $\$ 1000$ graduation money. A bank is offering a 4% interest rate. Calculate how much money you have after 10 years if the bank compounds:
a. Annually
b. Semi-Annually
c. Quarterly
d. Monthly
e. Weekly
