Name: \qquad Date: \qquad
For each of the functions find the following information.

1. Graph the function $f(x)=(2)^{x}-3$

\mathbf{x}	\mathbf{y}

Asymptote
2. Graph the function $f(x)=-\left(\frac{1}{2}\right)^{x}+5$

\mathbf{x}	\mathbf{y}

Asymptote \qquad

Sequence	Common Difference (d)	Formula	Given Term ($\left.\mathbf{n}^{\text {th }}\right)$
$-28,-34,-40,-46, \ldots$			$a_{10}=$
$10,13,16,19, \ldots$		$a_{12}=$	
$-14,-24,-34,-44 \ldots$			$a_{38}=$

Sequence	Common Ratio (r)	Formula	Given Term (n ${ }^{\text {th }}$)
$2,12,72,431 \ldots$			$\mathrm{a}_{8}=$
$128,32,8,2, \ldots$		$\mathrm{a}_{6}=$	
$3,12,48,192, \ldots$			$\mathrm{a}_{38}=$

Exponential Models

3. Write an explicit formula to model the number of dots per day.
OO
How many dots will there be on day 7 ?

Day 2
4. Taylor is training for a marathon. He decides to begin by running 3 miles and increase by 1.5 miles each day.

Write an equation to represent the scenario.
How long will it take him to run 26.2 miles?
5. You bought a Boston Whaler in 2004 for $\$ 12,500$. The boat's value depreciates by 7% a year. How much is the boat worth now? How much is it worth in 2020?
6. The population of a large city increases by a rate of 3% a year. When the 2000 census was taken, the population was 1.2 million.
a) Write a model for this population growth.
b) What should the population be now? What is the projected population for 2020 ?

Solve the following exponential equations. Show all work!
11. $3^{-3 x+1}=3^{x-9}$
13. $8^{x-1}=\left(\frac{1}{2}\right)^{2 x-1}$
12. $25^{x-4}=5^{3 x+1}$
14. $4^{3-x}+2=18$

