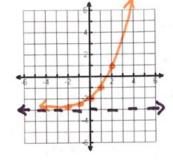
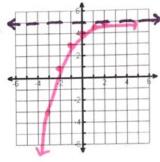

66745


Name:

_Date: _

For each of the functions find the following information.

1. Graph the function $f(x) = (2)^x - 3$



Asymptote 4=-3

2. Graph the function $f(x) = -\left(\frac{1}{2}\right)^x + 5$

X	У
-2	
-	3
0	Ч
1	4.5
2	4.75

Asymptote y = 5

Sequence	Common Difference (d)	Formula	Given Term (nth)		
-28, -34, -40, -46,	6.	$a_1 = -28 - 6(n-1)$ $-28 - 60 + 6$ $a_1 = -60 - 22$	a ₁₀ = (10)-22		
10, 13, 16, 19,	+3	$a_{n} = 10 + 3(n-1)$ $a_{n} = 30 + 7$	3 (12)+7 a12= (43)		
-14, -24, -34, -44	-10	$a_n = -14 - 10(n-1)$ $-14 - 100 + 10$ $a_n = -100 - 4$	-13 (38)-4 a38=(-384)		

Sequence	Common Ratio (r)	Formula	Given Term (nth)
2, 12, 72, 431	6,5- 5-	$a_n = 2(6)^{n-1}$	2(6)8-1 08 (559,872)
128, 32, 8, 2,	4	$\alpha_n = 128(\frac{1}{4})^{n-1}$	128(-4)6- Cl6= (1)
3, 12, 48, 192,	4	an=3 (4) n-1	3(4)38-1 (5.67×10 ²²)

567 and 20 0's

Exponential Models

_			12	12								
3.	Write	an	explicit	formula	to	model	the	number	of	date	nor	day
			011011011	101111010	10	111000		TOTTOTT		COLO	DEL	uuv.

an=2(3)n-1 $a_1 = 2$ r = 3

00

000000

How many dots will there be on day 7?

Day 1 an=2(3)7-1

4. Taylor is training for a marathon. He decides to begin by running 3 miles and increase by 1.5 miles each day. a= 3 d=1.5

Write an equation to represent the scenario.

How long will it take him to run 26.2 miles?

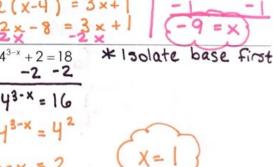
26.2=1.50+1.5

5. You bought a Boston Whaler in 2004 for \$12,500. The boat's value depreciates by 7% a year.

How much is the boat worth now? How much is it worth in 2020?

y=12,500 (0.93)15=\$4,208.76

6. The population of a large city increases by a rate of 3% a year. When the 2000 census was taken the population was 1.2 million as 0.03 P=1.2 taken, the population was 1.2 million. r=0.03


a) Write a model for this population growth. $\sqrt{1.2(1.03)}$

b) What should the population be now? What is the projected population for 2020? $y = 1.2 (1.03)^{19} = 2.10 \text{ million} \quad y = 1.2 (1.03)$ 4=1.2 (1.03)20 = 2.17 mill

Solve the following exponential equations. Show all work!

* Bases already match

* Create common 12. $25^{x-4} = 5^{3x+1}$

