Use the following to review for you test. Work the Practice Problems on a separate sheet of paper.

Use the following to review for you test.		Work the Practice Problems on a separate sheet of paper.	
What you need to know & be able to do	Things to remember	Problem	Problem
	• Gives the <u>First</u> <u>Term</u>	 Write the explicit and recursive rules for the following sequence -5, 2, 9, 16, 	3. Write the explicit rule for the following sequence -15, -13, -11, -9,
Arithmetic Sequences	• Adding or <u>Subtracting</u> to get to the next term • Explicit: • $a_n = a_1 + d(n-1)$ • Recursive: • $a_n = a_{n-1} + d$	2. Find the 10 th term	4. 7 is theth term of the sequence
Geometic Sequences	• Gives the <u>First</u> <u>Term</u> • <u>Multiplying or</u> <u>Dividing</u> to get to the next term • Explicit • $a_n = a_1(r)^{n-1}$	 5. Write the explicit and recursive rules for the following sequence 3, 6, 12, 24, 48, 6. Find the 15th term 	 7. Hillgrove has 324 kids that show up to try out for baseball on the first day. If a third get cut each day, write a sequence for the scenario. 8. How many cuts will it take for there to be 12 kids remaining?
	• Recursive • $a_n = a_{n-1}(r)$	9. $5^{3x+1} = 5^{x-9}$	10. $3^{x-8} = 9^{x}$
Solving Exponential Equations	 Must have SAME base Set exponents = (don't forget to distribute) Solve for x 	11. $4^{3x} = 8^{x+1}$	12. $4^{4x+8} = \left(\frac{1}{4}\right)^{x-18}$

GSE Algebra I	Unit 4	– Exponential Functions	4.06 – Review #1
Characteristics of Functions	 f(x) = a(b)^{x-h} + k Locate the asymptote (k) Use your calculator to find 5 good points Sketch 	 13. Graph the function f(x) = 2^x - 2 Asymptote: 	
Exponential Models	Gives the <u>Starting Value</u> • y = ab ^x	 14. Write an equation for the chart. x 0 1 2 3 y 2 8 32 128 If the table represents a bee population and a bee house only holds 10,000 bees, how many days will it be before they need another house? 	 15. The temperature in Georgia has been crazy! Today it was a high of 80 and every hour the temperature was 80% of the previous amount. Write an equation to represent the temperature. What will the temperature be 5 hours later?
Growth and Decay Models	 Growth: y = P(1+r)^x Decay: y = P(1-r)^x Factor: whole parentheses Rate: Percent 	 16. The population for Powder Springs in 2000 was 25,000. Since then, the population has grown at a rate of 3.2% each year. Write an equation to represent the population of Powder Springs since 2000. According to the equation, what will the population be in the year 2016? 	 17. Mr. Gossett is a machinist. He bought some new machinery for about \$125,000. If the machinery depreciates at the rate of 15% per year, what is the value of the machinery at the end of 10 years?
Compound Interest	• $A = P\left(1 + \frac{r}{n}\right)^{nt}$ • Annually = 1 • Biannually = 2 • Quarterly = 4 • Monthly = 12 • Weekly = 52 • Daily = 365	 18. \$20,000 is invested at a rate of 3% and is compounded annually. Equation: How much money will there be in the account after 8 years? 	 19. \$27,000 is invested at a rate of 3.75% and is compounded quarterly. Equation: How much money will there be in 3 years?