\qquad Date: \qquad
Use the following to review for you test. Work the Practice Problems on a separate sheet of paper.

What you need to know \& be able to do	Things to remember	Problem	Problem
Arithmetic Sequences	- Gives the First Term - Adding or Subtracting to get to the next term - Explicit: - $a_{n}=a_{1}+d(n-1)$ - Recursive: - $a_{n}=a_{n-1}+d$	1. Write the explicit and recursive rules for the following sequence $-5,2,9,16, \ldots$ 2. Find the $10^{\text {th }}$ term	3. Write the explicit rule for the following sequence $-15,-13,-11,-9, \ldots$ 4. 7 is the \qquad th term of the sequence
Geometic Sequences	- Gives the First Term - Multiplying or Dividing to get to the next term - Explicit - $a_{n}=a_{1}(r)^{n-1}$ - Recursive - $a_{n}=a_{n-1}(r)$	5. Write the explicit and recursive rules for the following sequence $3,6,12,24,48, \ldots$ 6. Find the $15^{\text {th }}$ term	7. Hillgrove has 324 kids that show up to try out for baseball on the first day. If a third get cut each day, write a sequence for the scenario. 8. How many cuts will it take for there to be 12 kids remaining?
Solving Exponential Equations	- Must have SAME base - Set exponents = (don't forget to distribute) - Solve for x	9. $5^{3 x+1}=5^{x-9}$	10. $3^{x-8}=9^{x}$
		11. $4^{3 x}=8^{x+1}$	12. $4^{4 x+8}=\left(\frac{1}{4}\right)^{x-18}$

