Name: \qquad Date: \qquad

Sequences Practice

(Fill in the formulas)	Explicit	Recursive
Arithmetic		
Geometric		

Determine if the given sequence is arithmetic, geometric, or neither.

1. $1,3,9,27, \ldots$
2. $2,4,6,8 \ldots$

2. $2,5,8,10, \ldots$

4. $4,7,10,13, \ldots$

Complete each statement:
8.27 is the \qquad th term of: $-5,-1,3,7, \ldots$
9. -10 is the \qquad th term of:
$14,12.5,11,9.5, \ldots$

Write the rule for each geometric sequence and find the given term:

Sequence	Common Ratio (r)	Explicit Formula	Recursive Formula	Given Term $\left(\mathbf{n}^{\text {th }}\right)$
$-4,-12,-36,-108 \ldots$				$a_{10}=$
$160,80,40,20, \ldots$				$a_{12}=$
$2,8,32,128, \ldots$				$a_{14}=$

Find the nth term for each geometric sequence. Round to 3 decimal places if necessary.

15. $a_{1}=3, r=-4, n=6$
16. $a_{1}=-500, r=1 / 2, n=10$
17. What are the first four terms in the sequence whose nth term is $a_{n}=(-2)^{n}+1$
a. $3,4,5,6$
C. $-1,5,-7,17$
b. $-1,1,-1,1$
d. $-2,4,-8,16$
18. The $8^{\text {th }}$ term of an arithmetic sequence is 36 . If the common difference is 2 , what is the first term in the sequence? (Hint: work backwards!!!)
a. 22
b. 24
c. 38
d. 64
19. Look at the sequence in this table. What function represents this sequence?
a. arithmetic; $a_{n}=a_{n-1}+1$
b. arithmetic; $a_{n}=a_{n-1}+2$
c. geometric; $a_{n}=2\left(a_{n-1}\right)$

\mathbf{a}	1	2	3	4	\cdots
$\mathbf{a}_{\mathbf{n}}$	-1	1	3	5	\cdots

d. geometric; $a_{n}=3\left(a_{n-1}\right)$
20. Look at the sequence in this table. What function represents this sequence?
a. $\mathrm{a}_{\mathrm{n}}=\mathrm{n}+7$
b. $\mathrm{a}_{\mathrm{n}}=\mathrm{n}+9$
c. $a_{n}=2 n+5$

\mathbf{a}	1	2	3	4	\cdots
$\mathbf{a}_{\mathbf{n}}$	8	11	14	17	\cdots

d. $a_{n}=3 n+5$

