\qquad
\qquad

Arithmetic and Geometric Sequences

A sequence is a function whose \qquad is a set of consecutive whole numbers. So the input in any sequence is \qquad .

The output of a sequence are called the \qquad of the sequence.

A sequence can be specified by an \qquad or a \qquad .

REVIEW: Arithmetic Sequence:

A sequence of terms that have a \qquad between them.
To find the common difference, \qquad the second term by the first term. Verify that the difference is consistent.

Let's recall the two types of formulas for Arithmetic Sequences:

Arithmetic Explicit Formula	Used for finding the $n^{\text {th }}$ term of a sequence	
Recursive Formula	Used for finding the NEXT term in a sequence	

1. 97 is the ____th term of the sequence: $-3,1,5,9, \ldots$
2. -73 is the \qquad th term of the sequence: 5, 2, -1, -4, ...

Geometric Sequence:

A sequence of terms that have a \qquad between them.
To find the common ratio, \qquad the second term by the first term. Verify that the ratio is consistent.

Determine if the sequence is geometric and find the common ratio.

1. $4,8,16,32, \ldots$
2. $256,64,16,4, \ldots$
3. $3,6,9,12, \ldots$

So, what are the TWO different types of formulas for Geometric Sequences:

Geometric Explicit Formula	Used for finding the $n^{\text {th }}$ term of a sequence	
Recursive Formula	Used for finding the NEXT term in a sequence	

Sequence	Common Ratio (\mathbf{r})	Explicit Formula	Recursive Formula	Given Term $\left(\mathbf{n}^{\text {th }}\right)$
$6,3,1.5, .75, \ldots$				$a_{7}=$
$-4,-12,-36,-108, \ldots$				$a_{10}=$
$3,12,48,192, \ldots$				$a_{5}=$

