Honors Algebra I	3.2 - Homework
N loung o	Date

Number Systems and Characteristics of Functions

Into which group does each number go?

	Natural	Whole	Integers	Rational	Irrational	Real	Imaginary	Complex
22.5								
22.0								
3/8								
$\sqrt[3]{14}$								
4-7i								
4-/1								
13i								
-18								
$\sqrt{-18}$								
2i -18.4								
0								
9/4								

Identify the property or equation that justifies each missing step or equation in the following table. Check your work when you finish!

Equation	Steps
1. $\frac{1}{2}x - \frac{1}{6}(x - 42) = 13.5$	Given
2.	
3.	
4.	
5.	

Is it Rational?

For each of the numbers below decide whether it is rational or irrational. Explain your reasoning.

Rational or Irrational?	Detailed reason why:
1. 5	
2. $(5+\sqrt{5})(5-\sqrt{5})$	
3. 0.575	
<i>4.</i> √5	
5. 5 + √7	
6. $\frac{\sqrt{10}}{2}$	
7. 5. 75	
8. 5 7	
9. $(7+\sqrt{5})(5-\sqrt{5})$	

In the right-hand column, write whether you <u>agree</u> or <u>disagree</u> with each statement.

- 10. Arlo says, " $0.\overline{57}$ is an irrational number."
- 11. Hao says, "No, Arlo, it is rational because $0.\overline{57}$ can be written as a fraction."
- 12. Eli says, "Maybe Hao's correct, you know. 'Cause $0.\overline{57} = \frac{57}{100}$."
- 13. Korbin says, "Hang on. The decimal for $0.\overline{57}$ would go on forever if you tried to write it. That's what the bar thing means, right?"
- 14. Hank says, "And because it goes on forever, that proves $0.\overline{57}$ has got to be irrational."