

Standard position:
1.
2.

- \qquad - your values
are positive.
\bullet \qquad - your values
are negative.

Finding angle measures:

- You can keep going around the unit circle more and more times.

Ex. 1

Ex. 2

Ex. 3

Ex. 4

Sketching \& Determining the Quadrant of the Terminal Side of each Angle:

Ex. 5

Angle: - 85°
Quadrant:

Ex. 6

Angle: 150°
Quadrant: \qquad

Ex. 7

Ex. 8

Quadrant:

Finding Coterminals: Add and subtract 360° or 2π
$217^{0}=$ \qquad , \qquad
$\frac{3}{4} \pi=$ \qquad , ,

Converting Between Radians \Leftrightarrow Degrees

Degrees $=180 \Leftrightarrow$ Radians $=\pi \quad$ Degrees $=360 \Leftrightarrow$ Radians $=$ \qquad
Degrees $=90 \Leftrightarrow$ Radians= \qquad
Degrees $=270 \Leftrightarrow$ Radians $=$ \qquad
Degrees \rightarrow Radians (mult. by $\frac{\pi}{180}$) Radians \rightarrow Degrees (mult. by $\frac{180}{\pi}$)

Convert Each:

Ex. 9
$900^{\circ} \Rightarrow$ radians

Ex. 10
$-32^{\circ} \Rightarrow$ radians

Ex. 11

$$
\frac{11 \pi}{15} \Rightarrow \text { degrees }
$$

$$
-\frac{21 \pi}{4} \Rightarrow \text { degrees }
$$

Arc Length: To find the measure of the length of an arc: $s=r \theta$

$$
S=\operatorname{arc} \text { length; } r=\text { radius; } \theta=\text { angle measure in radians }
$$

Ex 1: $\frac{\pi}{4} ; r=3 m$
Ex 2: $\frac{7 \pi}{6} ; r=2.1 y d s$
Ex. 3: $140^{\circ} ; r=11.1 \mathrm{~cm}$

Ex 4: A circle has a radius of 4 inches. Find the length of an arc intercepted by a central angle of 240°

