Name: \qquad Date: \qquad
Solving Quadratics by Using Square Roots
Solve each quadratic equation.

1. $x^{2}+4=29$	2. $3 x^{2}-7=47$	3. $x^{2}+11=16$
4. $(x+4)^{2}=121$	5. $(2 x-3)^{2}=9$	6. $(x-7)^{2}=99$
7. $(x+3)^{2}+6=18$	8. $(2 x+6)^{2}-8=24$	9. $x^{2}+21=5$
10. $3(x+4)^{2}=9$	11. $3\left(x^{2}-4\right)=2 x^{2}-1$	12. $\frac{2}{5} x^{2}-3=7$

13. $x^{2}-14 x+13=0$
14. $2 x^{2}-7 x=x^{2}-12$
15. $2 x^{2}-15=-7 x$

Word Problems

Waterfalls: Angel Falls in Venezuela is the tallest waterfall in the world. Water falls uninterrupted for 2421 feet before entering the river below. The height h above the river in feet of water going over the edge of the waterfall is modeled by $h(t)=-16 t^{2}+2421$, where t is the time in seconds after the initial fall.
A. Estimate the time it takes for the water to reach the river.
B. Ribbon Falls in California has a height of 1612 ft . Approximately how much longer does it take water to reach the bottom when going over Angel Falls than when going over Ribbon Falls?

Safety: If a tightrope walker falls, he will land on a safety net. His height h in feet after a fall can be modeled by $h(t)=60-16 t^{2}$, where t is the time in seconds. The safety net is 11 feet off the ground.

How many seconds will the tightrope walker fall before landing on the safety net?

