Name:

Date: _____

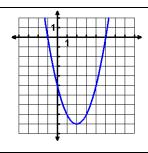
1. $f(x) = 2x^2 - 3$ from [2, 4].

2. $f(x) = -x^2 - 7x + 1$ from [-1, 3].

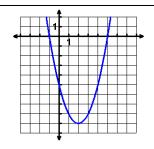
3. a. Find the rate of change from day 2 to 5.

4. In 2008, about 66 million U.S. households had both landline phones & cell phones. Find the rate of change from 2008 – 2011.

DAYS	AMOUNT OF					
(X)	BACTERIA F(X)					
1	19					
2	30					
3	48					
4	76					
5	121					
6	192					


of change from 2008 – 2011.

YEAR HOUSEHOLDS IN
(X) MILLIONS F(X)


YEAR	HOUSEHOLDS IN					
(X)	MILLIONS F(X)					
2008	66					
2009	61					
2010	56					
2011	51					

What does this mean?

5. Find the average rate of change from [0, 2]

6. Find the average rate of change from [4, 5]

7. Find the rate of change of Pete's height from 3 to 5 years.

Time (years)	1	2	3	4	5	6
Height(in.)	27	35	37	42	45	49

8. For $f(x) = x^2 + 4x + 1$, find the rate of change on the interval [-2, 4].