Name: \qquad

Date: \qquad

Functions and Relations

Terms to Know:

© Relation: Any set of \qquad that has an \qquad .
(© Function: A \qquad such that every single \qquad has exactly
\qquad output.

How do I determine if a relation is a function?

© Each input must have \qquad output.
© Look at the graph....The vertical line test: No vertical line can pass through
\qquad points on the graph.

You try these: Are these relations functions?

1. $\{(3,2),(4,3),(5,4),(6,5)\}$
2.

4.

5.

6.

7.

Function Notation:

© Function notation is \qquad . It is pronounced \qquad .
© $f(x)$ is a fancy way of writing \qquad in an \qquad -

- Example: $f(x)=2 x+4$ is the same as $y=2 x+4$

Function Notation	$\mathbf{x}-\mathbf{y}$ Notation
$f(x)=5 x+2$	
	$y=-3 x-7$

Evaluating Functions:

8. Given $f(x)=2 x+3$, find $f(-2)$	9. Given $f(x)=32(2)^{x}$, find $f(3)$	10. Given $f(x)=x^{2}-2 x+3$, find $f(-3)$	11. Given $f(x)=3^{x}+1$ find $f(3)$
8. Given $f(x)=-5 x+1$, find $f(-3)$	9. Given $f(x)=7(4)^{x}$, find $f(2)$	10. Given $f(x)=x^{2}+5 x-6$, find $f(-2)$	11. Given $f(x)=3^{x-2}$, find $f(4)$

Find the indicated values by using the graph.

1. $h(2)=$ \qquad
2. $h(4)=$ \qquad
3. $h(1)=$
4. $h(5)=$ \qquad
5. $h\left(_\right)=4$
6. $h\left(_\right)=1$
7. What are the values for $h($ \qquad $)=2 ?$

Find the indicated values by using the table.
8. $g(10)=$ \qquad
9. $g(6)=$ \qquad
10. $g(0)=$ \qquad
12. $g($
) $=21$
11. $g(22)=$ \qquad
13. $g\left(_\right)=33$

\mathbf{x}	$\mathbf{g}(\mathbf{x}) \mathbf{=} \mathbf{2 x + 1}$
0	
2	
4	
6	
8	
10	
12	
14	
16	
18	
20	

