Name:

Date: _____

Arithmetic Sequences

A ______ is a function whose domain is a set of <u>consecutive whole numbers</u>. This makes the domain for EVERY sequence {1, 2, 3, 4, ...}. The range would be the **terms of the sequence** (the numbers in the list). The sequence can be specified by an <u>equation</u> or a <u>rule</u>.

An ______ sequence is a sequence of terms that have a common ______ between them.

Explicit Formula: (used to find a specific term in the sequence) Make sure you SIMPLIFY!

Before: $a_n = a_1 + d(n-1)$	After:
an e	$O_1 =$
d =	N =
Determine if the sequence is arithmetic: 2, 5, 8, 11,	Find the explicit equation: 2, 5, 8, 11,

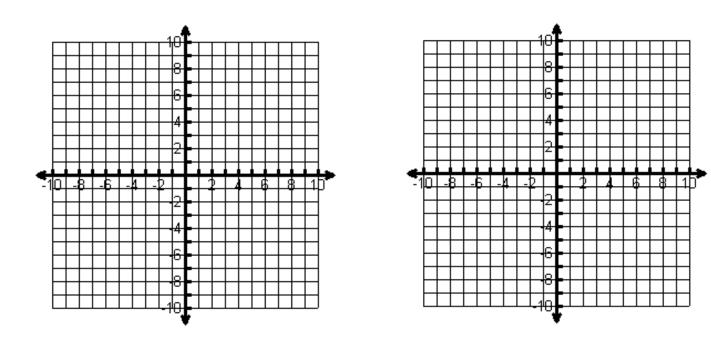
Determine if the sequence is arithmetic:

1/4, 1/2, 1, 2, ...

Determine if the sequence is arithmetic:	Find the explicit equation:	
7, 3, -1, -5,	7, 3, -1, -5,	

How else can we represent it?

Find the common difference, the explicit formula, and the tenth term.


3, 9, 15, 21, ...

Graphing arithmetic sequences:

The key is realizing that the explicit formula simplified is the same as ______.

Graph: $a_n = -2n + 4$

You try:
$$a_n = -\frac{2}{3}n - 4$$

