Name: \qquad Date: \qquad

Arithmetic Sequences

A \qquad is a function whose domain is a set of consecutive whole numbers. This makes the domain for EVERY sequence $\{1,2,3,4, \ldots\}$. The range would be the terms of the sequence (the numbers in the list). The sequence can be specified by an equation or a rule.

An \qquad sequence is a sequence of terms that have a common \qquad between them.

Explicit Formula: (used to find a specific term in the sequence) Make sure you SIMPLIFY!

$$
\text { Before: } a_{n}=a_{1}+d(n-1) \quad \text { After: } \square
$$

$a_{n}=$
$a_{1}=$
$d=$
$n=$

Determine if the sequence is arithmetic:
$2,5,8,11, \ldots$

Find the explicit equation:
$2,5,8,11, \ldots$

Determine if the sequence is arithmetic:
$1 / 4,1 / 2,1,2, \ldots$

Determine if the sequence is arithmetic:
$7,3,-1,-5, \ldots$

Find the explicit equation:
$7,3,-1,-5, \ldots$

How else can we represent it?

Find the common difference, the explicit formula, and the tenth term.
$3,9,15,21, \ldots$

Graphing arithmetic sequences:

The key is realizing that the explicit formula simplified is the same as \qquad .

Graph: $a_{n}=-2 n+4$
You try: $a_{n}=-\frac{2}{3} n-4$

