X I	Б. 1	
Name:	Date:	

Naming, Evaluating, and Combining Functions

Polynomials are named according to their _____ and ___

	the	e variable, the _ exponent of that	erms a	re separated by	or
Degree	Name	Example	Terms	Name	Example
0			1		
1			2		
2			3		
3			4+		
4			Example 1. >	es: x ³ + 6x ² + 12x + 8	
5			2. 3 3. 2	3 2x + 4	

Standard Form

- © The terms of a polynomial are in <u>standard form</u> if they are ordered from left to right in _____ order; which means from the _____ exponent to the least.
- The coefficient of the first term is called the ______.
- **Example:** Write $9 + x 4x^3$ in Standard Form:
- **Example:** Write $3x^2 2 + 4x 5x^3$ in Standard Form: _____

Polynomial	Standard Form	Degree	# of Terms	NAME
8x				
$3+4x^2+2x$				
$5x^3 + x^2$				
$6 + 3x^2 - 4x - 2x^4$				

Adding Polynomials:

1.
$$(a^2 + ab - 3b^2) + (4a^2 - ab + b^2)$$

Subtracting Polynomials:

2.
$$(a^2 + ab - 3b^2) - (4a^2 - ab + b^2)$$

3.
$$(2x^2-4x+3)+(x^2+5x-1)$$

4.
$$(2-x^2+x)-(x^2-2x+4)$$

Practice

Name the following polynomials by degree and number of terms.

1.
$$4x + 5$$

2.
$$3x^2 + 4x - 8$$

3.
$$-3x^2 + 7x^4 + 2x - 1$$

4.
$$(4x^2-6x)+(3x^2+4x-8)$$

5.
$$(x^2 - 3x + 2) - (5x^3 - 4x^2 + 1)$$

6.
$$(8a^5+10a^3)-(13a^5-7a^3)$$

A.
$$21a^5 + 3a^3$$

B.
$$-5a^5+3a^3$$

D.
$$-5a^5+17a^3$$

Find and explain the mistake. Then solve the problem correctly.

Original Problem	Explanation of Mistake	Rework
$(2x^3-3x^2+5x-1)-(3x^3-3x^2-2x+4)$		
$-x^3-6x^2+3x+3$		
$(2x^3-2x^2+5x-1)+(8x^2-3x+4)$		
$10x^3 - 5x^2 + 9x - 1$		