\qquad Date \qquad
Dimensional Analysis and Metric Conversions Practice

Common Conversion Factors				
$1 \mathrm{yr}=365$ days	$1 \mathrm{mi}=5280 \mathrm{ft}$	$454 \mathrm{~g}=1 \mathrm{lb}$	$1 \mathrm{gal}=3.79 \mathrm{~L}$	
$1 \mathrm{day}=24 \mathrm{hours}$	$1 \mathrm{ft}=12 \mathrm{in}$	$1 \mathrm{lb}=16 \mathrm{oz}$	$264.2 \mathrm{gal}=1 \mathrm{~m}$	
$1 \mathrm{hr}=60$ minutes	$1 \mathrm{in}=2.54 \mathrm{~cm}$	$1 \mathrm{~kg}=2.2 \mathrm{lbs}$	$1 \mathrm{gal}=128 \mathrm{fluid} \mathrm{oz}$	
$1 \mathrm{~min}=60 \mathrm{sec}$	$3 \mathrm{ft}=1 \mathrm{yd}$	$946 \mathrm{~mL}=1 \mathrm{qt}$	$4 \mathrm{qt}=1 \mathrm{gal}$	

1. In the past month, Cobb County has had 0.6 yards of rain. Express this amount in centimeters.
2. How many fluid ounces are in a 2 Liter Coca-Cola?
3. Diego is working on the following problem in class. What conversion factor should go in the missing fraction?

A student can run 100 yards in 15 seconds. Convert this speed to miles per hour.

$$
\frac{100 \text { yards }}{15 \mathrm{sec}} \cdot \frac{?}{?} \cdot \frac{1 \mathrm{mi}}{5280 \mathrm{ft}} \bullet \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \bullet \frac{60 \mathrm{~min}}{1 \mathrm{hr}}
$$

A. $\frac{12 \mathrm{ft}}{1 y \mathrm{~d}}$
B. $\frac{1 \mathrm{mi}}{3 \mathrm{yd}}$
C. $\frac{3 \mathrm{ft}}{1 y d}$
D. $\frac{1 \mathrm{ft}}{3 \mathrm{yd}}$

Match the unit to the correct abbreviation.

15. The symbols for units of length in order from smallest to largest are
A. $\mathrm{m}, \mathrm{cm}, \mathrm{mm}, \mathrm{km}$
B. $\mathrm{mm}, \mathrm{m}, \mathrm{cm}, \mathrm{km}$
C. $\mathrm{km}, \mathrm{mm}, \mathrm{cm}, \mathrm{m}$
D. $\mathrm{mm}, \mathrm{cm}, \mathrm{m}, \mathrm{km}$

Convert each of the following.

16. $5 \mathrm{~L}=$ \qquad mL
17. $104 \mathrm{~km}=$ \qquad m
18. $16 \mathrm{cg}=$ \qquad mg
19. $198 \mathrm{dkg}=$ \qquad kg
